Scientists grow precursors for human pigment cells

Abnormalities in pigment cells can affect us in many ways, from genetic disorders such as albinism to freckles caused by aging. When melanocytes become malignant melanoma they cause a type of skin cancer called melanoma. To research and develop cures for these conditions, we need a stable supply of melanocytes. However, isolating melanocytes from human skin requires advanced techniques, and it is difficult to maintain stable primary cultures of adult melanocytes.

Induced pluripotent stem cells (iPS cells) are created from adult skin and blood cells, and they can be differentiated to become many types of human cells. Also known as “regenerative medicine,” stem cell technology enables us to grow cells that can be used in medical treatment and research.

There are already several known methods of creating melanocytes from stem cells. In these protocols, various signal activators (reagents) are added to the cell culture in sequential order during the differentiation process from iPS cells to melanocytes. However, it is very difficult and costly to create melanocytes within the short timespan demanded by medical research.

In this new study, by temporarily pausing the signal activators, the team succeeded in creating precursor cells for melanocytes. These precursor cells are self-renewing in primary cultures and they can also be temporarily frozen. After defrosting them and administering differentiation activators, in just one week they develop into melanocytes. Using these precursor cells, researchers can now create the necessary amount of melanocytes on demand. During this study the team also revealed how these precursor cells can self-replicate without differentiation, and how they differentiate to become mature melanocytes.

This discovery was made by a research group led by members of the Division of Dermatology, Graduate School of Medicine, Kobe University (Professor Chikako Nishigori, Associate Professor Makoto Kunisada, and Researcher Chieko Hosaka), in collaboration with members of the Kobe University Graduate School of Science, Technology and Innovation and Fujita Health University.

With this new method, researchers can flexibly obtain melanocyte samples from both patients suffering pigment disorders and healthy donors. These precursor cells also have potential applications in research on melanoma, melanocyte disorders and aging-related skin hue changes.

Top Articles

Phytochemicals: beyond vitamins

Phytochemicals are non-nutritive chemicals in plant foods that protect plants from microbial invasions and infections.

Read More

Targeting an RNA-binding protein to fight aging

Researchers have found that the RNA-binding protein PUM2 contributes to the accumulation of defective mitochondria, a key feature of the aging process. Targeting PUM2 in old animals protects against age-related mitochondrial dysfunction.

Read More

People in Canada have good health, are living longer: Global Burden of Disease Study trends

Data from the Global Burden of Disease Study shows that the overall health of Canadians is good and is consistent with other similar countries, and people are living longer with diseases.

Read More

Latest News

Larger drug trials that intervene earlier needed for Alzheimer’s disease

There are currently no drugs that stop or inhibit Alzheimer’s disease. Despite drug trials showing plaque reduction in the brain, the patients’ cognitive function did not improve. Would the results be different if it were possible to design studies that intervene much earlier on in the disease, before cognition is affected? This is what an international study has attempted to facilitate.

Read

Indications why older people are more susceptible to Alzheimer’s disease

The risk of developing Alzheimer’s disease increases with age. Medical researchers have uncovered a possible cause for this connection: Certain molecules involved in the disease, termed tau-proteins, spread more easily in the aging brain.

Read

Combat veterans more likely to experience mental health issues in later life

Military veterans exposed to combat were more likely to exhibit signs of depression and anxiety in later life than veterans who had not seen combat, a new study shows.

Read

“Our bodies are our gardens - our wills are our gardeners.”

William Shakespeare