A ‘one-two punch’ to wipe out cancerous ovarian cells

With time, our cells age and enter a phase called cellular senescence. These senescent cells stop proliferating, build up in the body and cause the development of diseases such as cancer. In recent years, the scientific community has tried to heal these aging-related pathologies by targeting and destroying senescent cells.

“In the case of epithelial ovarian cancer (EOC) — the most common and lethal ovarian cancer — we act in two stages. First, we force the cancer cells to age prematurely i.e., we force them into senescence. This is the first therapeutic punch. We throw our second punch using senolysis, destroying and eliminating them. This strategy requires excellent coordination of the two steps,” explained Francis Rodier, a researcher at the CRCHUM and professor at the Université de Montréal.

The team of researchers, led by Rodier and his colleague Anne-Marie Mes-Masson, discovered that EOC cells enter senescence following chemotherapy in combination with PARP inhibitors. PARPs are enzymes that help repair damage to DNA. By blocking PARPs, PARP inhibitors prevent cancer cells from repairing their DNA, stop them from proliferating and cause them to age prematurely.

“Thanks to our ‘one-two punch’ approach, we have managed to destroy senescent EOC cells in preclinical ovarian cancer models. Our approach could improve the effectiveness of chemotherapy in combination with PARP inhibitors and counteract the systematic resistance that develops with this treatment,” said Mes-Masson, a researcher at the CRCHUM and professor at the Université de Montréal.

Future clinical trials in store?

“Our study was done using cells taken from our biobank of samples from CHUM ovarian cancer patients. These patients agreed to take part in the research study and let us store their biological specimens. Our ‘one-two punch strategy’ was also tested on preclinical ovarian and breast cancer models, which allowed us to validate its effectiveness,” commented Mes-Masson.

Although the results of this study will be used to propose clinical trials for ovarian and triple-negative breast cancer, Rodier says that it is important to remember that they used preclinical models in which there was no immune system. “Given the importance of the immune response in humans, we need to continue evaluating our strategy in a context closer to biological reality.”

According to the Canadian Cancer Society, 2,800 Canadian women were diagnosed with ovarian cancer in 2017 and 1,800 died from the disease. It is the fifth leading cause of death in North America.

Top Articles

Parasitic worms cause cancer — and could help cure it

Billions worldwide are infected with tropical worms. Unsurprisingly, most of these people live in poor countries, kept poor by the effects of worm-related malnourishment. What may surprise many is that worms also cause the majority of cases of some cancers in these countries.

Read More

Phytochemicals: beyond vitamins

Phytochemicals are non-nutritive chemicals in plant foods that protect plants from microbial invasions and infections.

Read More

Targeting an RNA-binding protein to fight aging

Researchers have found that the RNA-binding protein PUM2 contributes to the accumulation of defective mitochondria, a key feature of the aging process. Targeting PUM2 in old animals protects against age-related mitochondrial dysfunction.

Read More

Latest News

AAN recommends people 65+ be screened yearly for memory problems

To help physicians provide the highest quality patient-centered neurologic care, the American Academy of Neurology (AAN) is recommending physicians measure how frequently they complete annual assessments of people age 65 and older for thinking and memory problems.

Read

New protocol to improve gene therapy tool production

A method to create a faster and lower cost alternative for a gene therapy tool.

Read

Kidney disease: Senescent cell burden is reduced in humans by senolytic drugs

In a small safety and feasibility clinical trial, researchers have demonstrated for the first time that senescent cells can be removed from the body using drugs termed ‘senolytics.’ The result was verified not only in analysis of blood but also in changes in skin and fat tissue senescent cell abundance.

Read

“Our bodies are our gardens - our wills are our gardeners.”

William Shakespeare