Super-resolution microscopy sheds light on how dementia protein becomes dysfunctional

UQ Queensland Brain Institute’s Clem Jones Centre for Ageing and Dementia Research Professors Frédéric Meunier and Jürgen Götz found a protein, Tau, involved in Alzheimer’s disease affects the organisation of the signalling protein Fyn, which plays a critical role in memory formation.

“One of the distinguishing features of Alzheimer’s disease is the tangles of Tau protein that form inside brain cells, but this is the first time anyone has demonstrated that Fyn nanoclustering is affected by Tau,” Professor Götz said.

Professor Meunier said single molecule imaging in living brain cells allowed unprecedented access to the organisation of key proteins in small nanoclusters that were not detectable previously.

“We have shown that Tau controls the Fyn nanoclustering in dendrites, where the communication between brain cells occurs,” Professor Meunier said.

“When Tau is mutated, Fyn makes aberrantly large clusters, thereby altering nerve signals and contributing to dysfunction of the synapse-junctions between nerve cells.”

Professor Meunier’s team used the super-resolution single molecule imaging technique to see how Tau and its mutants control Fyn nanoclustering.

Professor Meunier went on to investigate a different mutant of Tau found in families with a very high risk of developing frontotemporal dementia and found that Fyn was over-clustered in the spines of dendrites.

“Imagine that you have clustering of Fyn, a signalling molecule, throughout your life; it’s going to give rise to an over-signalling problem — this could be one of the ways in which Fyn is toxic to cells,” he said.

“The spines of the dendrites are critical to how nerve cells communicate with each other and underpin memory and learning.”

Exactly what causes Alzheimer’s and other forms of dementia is still a mystery, but Fyn is linked to both the plaques of amyloid protein that form between brain cells, and tangles of Tau protein that form inside brain cells — two distinguishing features of Alzheimer’s disease.

“Super-resolution single molecule imaging gives us an unprecedented insights into what is happening in living nerve cells, with the aim of understanding the biology behind these complex and debilitating diseases,” Professor Meunier said.

Top Articles

Phytochemicals: beyond vitamins

Phytochemicals are non-nutritive chemicals in plant foods that protect plants from microbial invasions and infections.

Read More

Parasitic worms cause cancer — and could help cure it

Billions worldwide are infected with tropical worms. Unsurprisingly, most of these people live in poor countries, kept poor by the effects of worm-related malnourishment. What may surprise many is that worms also cause the majority of cases of some cancers in these countries.

Read More

Targeting an RNA-binding protein to fight aging

Researchers have found that the RNA-binding protein PUM2 contributes to the accumulation of defective mitochondria, a key feature of the aging process. Targeting PUM2 in old animals protects against age-related mitochondrial dysfunction.

Read More

Latest News

Biochemists discover new insights into what may go awry in brains of Alzheimer’s patients

Three decades of research on Alzheimer’s disease have not produced major treatment advances for patients. Researchers now report new insights that may lead to progress in fighting the devastating disease. They discovered beta amyloid has a specific amino acid that can form a kink, like a kink in a garden hose, creating a harmful molecular zipper and leading to the death of neurons.

Read

Dementia care program improves mental health of patients, caregivers

A comprehensive dementia care program staffed by nurse practitioners working within a health system improves the mental and emotional health of patients and their caregivers.

Read

UTI discovery may lead to new treatments

Sufferers of recurring urinary tract infections (UTIs) could expect more effective treatments. UTIs are one of the most common bacterial infections.

Read

“Our bodies are our gardens - our wills are our gardeners.”

William Shakespeare