Marked slowdown of cell division rates in old age

The researchers say the findings may help explain why cancer — long considered a disease of aging, with incidence highest among people over age 65 — has been found to decelerate in occurrence at the extreme end of human life. The findings, they say, also provide clues about cell biology that might eventually lead to a better understanding of cancer.

The findings were published Sept. 23 in the Proceedings of the National Academy of Sciences.

Senior investigator Bert Vogelstein, M.D., the Clayton Professor of Oncology, co-director of the Ludwig Center at the Johns Hopkins Kimmel Cancer Center and a Howard Hughes Medical Institute investigator, pioneered the discovery that cancer is spurred by an accumulation of genetic mutations caused by mistakes cells make when copying DNA during cell division. Research in the last several decades assumed that such mutations accumulate over time at a steady rate, explains study leader Cristian Tomasetti, Ph.D., associate professor of oncology. However, when Vogelstein, Tomasetti and colleagues reanalyzed old data in dozens of published papers as part of this study, they found that mutations accumulate more slowly in old age.

That analysis led Tomasetti and Vogelstein to suspect that cell division rates slow down markedly in old age, giving cells fewer chances to accumulate DNA mistakes.

To test this hypothesis, the team analyzed cell replication rates in samples of various healthy tissues collected during biopsies and other medical procedures from more than 300 patients in their 20s and in their 80s. The researchers used dyes to stain various standard, tried-and-true molecular markers of cell division, such as the Ki67 antibody, to calculate cell multiplication rates, both “by eye” and with automated computer software.

Their findings showed that cell division rates slowed by about 40% in colon tissue samples collected from patients in their 80s compared with those in their 20s. Similarly, in samples of esophageal tissue, the division rate slowed by about 25% in the elderly compared with the younger patients. In the duodenum, at the beginning of the small intestine, the rate slowed by 26% in the elderly, and in posterior ethmoid sinonasal tissue, found near the nose, the rate slowed by 83% in the elderly.

The findings have numerous implications for better understanding cancer and aging, Tomasetti and Vogelstein say. For example, Vogelstein says, it’s long been known that the incidence of most human cancers rises exponentially throughout a person’s life, but decelerates or even flattens out for several cancers toward the end of life — a phenomenon that wouldn’t make sense if cells were always steadily dividing and accumulating mutations at the same rate.

“If the rate of cell division slows in old age,” Tomasetti says, “cells are probably accumulating fewer cancer-causing mutations at the end of life.”

The finding could also have implications in better interpreting data derived from laboratory animal models, the researchers say. When they performed a similar analysis of cell replication using tissue from young and old lab mice, they found no significant differences in the division rate — a considerable distinction between mice and humans that could make it more difficult to use aging mouse data as a proxy for aging humans.

Why human cells slow their replication at the end of life is currently unknown and will form the basis for future studies. “That human cells slow their division rate was not completely unexpected, but our study pins it down,” Tomasetti says. “Discovering how this happens could have important implications for human health.”

Top Articles

Sharp increase in falls in women during midlife

Falls are not just a problem of advanced age, according to researchers, who have identified a sharp increase in falls after the age of 40, particularly in women.

Read More

Parasitic worms cause cancer — and could help cure it

Billions worldwide are infected with tropical worms. Unsurprisingly, most of these people live in poor countries, kept poor by the effects of worm-related malnourishment. What may surprise many is that worms also cause the majority of cases of some cancers in these countries.

Read More

Phytochemicals: beyond vitamins

Phytochemicals are non-nutritive chemicals in plant foods that protect plants from microbial invasions and infections.

Read More

Latest News

Long-term blood pressure variation and risk of dementia

Scientists report that people who experienced substantial changes in blood pressure over the long term were at greater risk of dementia than those who did not.

Read

Anthrax may be the next tool in the fight against bladder cancer

Researchers have come up with a way to combine the anthrax toxin with a growth factor to kill bladder cancer cells and tumors.

Read

Study examines depression in the last year of life

Depression impacts quality of life at all life stages, but little is known about the factors related to depression in the last year of life. A recent study found that 59.3% of individuals had depression in the last month before death.

Read

“Our bodies are our gardens - our wills are our gardeners.”

William Shakespeare