Cells must age for muscles to regenerate in muscle-degenerating diseases

Idiopathic inflammatory myopathies are rare diseases that cause muscle weakness, inflammation, and fibrosis. In addition to drugs, exercise can be powerful therapy for some patients. But in cases of chronic inflammatory myopathy, exercise can actually induce inflammation and fibrosis in muscles. Scientists have been wanting to understand why exercise benefits some myopathies but not others.

Takako S. Chikenji of Hokkaido University collaborated with Yuki Saito and Mineko Fujimiya of Sapporo Medical University in Japan to investigate why a type of muscle cell, called fibro-adipogenic progenitors (FAPs), responds differently to physical exercise depending on the type of myopathy. These cells are a key regulator of the muscle stem cells needed for regeneration.

They investigated what happens when mice with myopathy exercise. In mice with acute muscle injury which simulates idiopathic inflammatory myopathy, they found FAPs initially increased but then returned to pre-damage levels after seven days. These FAPs eventually died and were cleared by cell-eating immune cells called phagocytes. In mice with chronic inflammatory myopathy, FAPs continued to proliferate for 14 days and were resistant to cell death and clearance by immune cells.

Investigating further, the team found that FAPs in mice with acute muscle injury showed strong signs of aging after exercise while FAPs in mice with chronic inflammatory myopathy didn’t. They also found that normal FAPs induced regeneration of muscle cells after acute muscle injury while FAPs lacking a cellular aging-inducing factor didn’t. These results together showed the aging of FAPs after exercise is necessary to establish a state of regenerative inflammation that induces muscle regeneration.

Moreover, the combination of exercise and administrating drugs which induce cellular aging restored FAP aging and improved muscle function and regeneration in mice with chronic inflammatory myopathy.

“Our findings demonstrate that exercise leads to muscle degeneration in chronic inflammatory myopathy because FAPs accumulate when they fail to age,” says Takako S. Chikenji. “Pharmacological induction of FAP senescence dramatically improved the therapeutic effects of exercise in mice with chronic myopathy. Further research is needed to investigate whether this strategy could be used to treat this condition in humans.”

Top Articles

Parasitic worms cause cancer — and could help cure it

Billions worldwide are infected with tropical worms. Unsurprisingly, most of these people live in poor countries, kept poor by the effects of worm-related malnourishment. What may surprise many is that worms also cause the majority of cases of some cancers in these countries.

Read More

Sharp increase in falls in women during midlife

Falls are not just a problem of advanced age, according to researchers, who have identified a sharp increase in falls after the age of 40, particularly in women.

Read More

Phytochemicals: beyond vitamins

Phytochemicals are non-nutritive chemicals in plant foods that protect plants from microbial invasions and infections.

Read More

Latest News

Does deep brain stimulation for Parkinson’s increase risk of dementia?

There’s good news for people with Parkinson’s disease. A new study shows that deep brain stimulation may not increase the risk of developing dementia.

Read

Study seeks to optimize comfort for patients removed from ventilators at end of life

A recently published paper reports on a study of the palliative ventilator withdrawal (PVW) procedure performed in intensive care units (ICU) at end of life.

Read

Dementia gene raises risk of severe COVID-19

Having a faulty gene linked to dementia doubles the risk of developing severe COVID-19, according to a large-scale study.

Read

“Our bodies are our gardens - our wills are our gardeners.”

William Shakespeare