Differences in walking patterns could predict type of cognitive decline in older adults

A new study by a Canadian research team, led by London researchers from Lawson Health Research Institute and Western University, evaluated the walking patterns and brain function of 500 participants currently enrolled in clinical trials. Their findings are published today in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association.

“We have longstanding evidence showing that cognitive problems, such as poor memory and executive dysfunction, can be predictors of dementia. Now, we’re seeing that motor performance, specifically the way you walk, can help diagnose different types of neurodegenerative conditions,” says Dr. Manuel Montero-Odasso, Scientist at Lawson and Professor at Western’s Schulich School of Medicine & Dentistry.

Dr. Montero-Odasso is known for his research on the relationship between mobility and cognitive decline in aging. Leading the Mobility, Exercise and Cognition (MEC) team in London, he is pioneering novel diagnostic approaches and treatments to prevent and combat early dementia.

This study compared gait impairments across the cognitive spectrum, including people with Subjective Cognitive Impairment, Parkinson’s Disease, Mild Cognitive Impairment, Alzheimer’s disease, Lewy body dementia and Frontotemporal dementia, as well as cognitively healthy controls.

Four independent gait patterns were identified: rhythm, pace, variability and postural control. Only high gait variability was associated with lower cognitive performance and it identified Alzheimer’s disease with 70 per cent accuracy. Gait variability means the stride-to-stride fluctuations in distance and timing that happen when we walk.

“This is the first strong evidence showing that gait variability is an important marker for processes happening in areas of the brain that are linked to both cognitive impairment and motor control,” notes Dr. Frederico Perruccini-Faria, Research Assistant at Lawson and Postdoctoral Associate at Western’s Schulich School of Medicine & Dentistry, who is first author on the paper. “We’ve shown that high gait variability as a marker of this cognitive-cortical dysfunction can reliably identify Alzheimer’s disease compared to other neurodegenerative disorders.”

When cognitive-cortical dysfunction is happening, the person’s ability to perform multiple tasks at the same time is impacted, such as talking while walking or chopping vegetables while chatting with family.

Having gait variability as a motor marker for cognitive decline and different types of conditions could allow for gait assessment to be used as a clinical test, for example having patients use wearable technology. “We see gait variability being similar to an arrhythmia. Health care providers could measure it with patients in the clinic, similar to how we assess heart rhythm with electrocardiograms,” adds Dr. Montero-Odasso.

This study was primarily funded by the Canadian Consortium on Neurodegeneration in Aging (CCNA), a collaborative research program tackling the challenge of dementia and other neurodegenerative illnesses. The CCNA was supported by a grant from the Canadian Institutes of Health Research.

Top Articles

Parasitic worms cause cancer — and could help cure it

Billions worldwide are infected with tropical worms. Unsurprisingly, most of these people live in poor countries, kept poor by the effects of worm-related malnourishment. What may surprise many is that worms also cause the majority of cases of some cancers in these countries.

Read More

Phytochemicals: beyond vitamins

Phytochemicals are non-nutritive chemicals in plant foods that protect plants from microbial invasions and infections.

Read More

Sharp increase in falls in women during midlife

Falls are not just a problem of advanced age, according to researchers, who have identified a sharp increase in falls after the age of 40, particularly in women.

Read More

Latest News

COVID-19 vaccine delivery by age may mitigate deaths and severe health impacts

Strategic vaccine delivery is critical to reducing COVID-19 transmission, mortality and long-term health impacts. A new study suggests that prioritizing vaccine delivery to older age groups and the medically vulnerable has the greatest impact in minimizing loss of life.

Read

Changes in proteins play important role in aging kidneys

Studying protein changes in the kidneys as we age, as well as the transcription of genes into proteins, helps provide a full picture of the age-related processes that take place in these organs.

Read

Scientists reveal how brain cells in Alzheimer’s go awry, lose their identity

Despite the prevalence of Alzheimer’s, there are still no treatments, in part because it has been challenging to study how the disease develops. Now, scientists have uncovered new insights into what goes awry during Alzheimer’s by growing neurons that resemble — more accurately than ever before — brain cells in older patients. And like patients themselves, the afflicted neurons appear to lose their cellular identity.

Read

“Our bodies are our gardens - our wills are our gardeners.”

William Shakespeare