Friends and enemies ‘make sense’ for long-lived animals

Some species and individuals focus their energy on reproduction (live fast, die young), while “slow-living” animals prioritise survival and tend to live longer lives.

In the new paper, University of Exeter scientists argue that natural selection favours complex social structures among slow-living animals — meaning that knowing their friends and enemies is easier for animals with longer lifespans, and helps them live even longer.

Meanwhile, fast-lived species should only bother with such social relationships if it increases their chances of reproduction.

“Slow-living species can afford to invest in social relationships, as they live long enough to enjoy the pay-offs,” said Professor Dave Hodgson, Director of the Centre for Ecology and Conservation on Exeter’s Penryn Campus in Cornwall.

“There is strong evidence that strong social bonds are beneficial for survival in slow-living species, including humans.

“We suggest there is a ‘positive feedback’ — certain social behaviours lead to a longer life, and longer lifespan promotes the development of social bonds.”

Professor Hodgson said there is “growing evidence” that differentiated social relationships have a bigger positive effect on survival than on reproduction.

As a result, fast-lived species do not gain the same evolutionary advantages from social relationships as slow-lived species.

Examples of fast-living species could include shrews and crickets, while animals such as mongooses, badgers and hyenas, and indeed humans, have a slower “pace of life.”

Pace of life measurements take body size into account. Larger animals tend to live longer, but pace of life can vary significantly in two species of similar size.

Dr Matthew Silk, also of the University of Exeter, said: “If we want to understand more about social relationships and lifespan, we need to think about the relationship between the two.

“More research is needed to explore the social structures of wild animals.

“This could help us understand the links between social bonds, survival and reproduction.”

Professor Hodgson said: “Our proposal, that strong and weak social bonds will be more prevalent in slower-living animals, is theoretical.

“We know a lot about animal lifespans, but we know too little about the social structures of many types of animal.

“If we are right, then social bonds could really be key to longer life.”

Top Articles

Parasitic worms cause cancer — and could help cure it

Billions worldwide are infected with tropical worms. Unsurprisingly, most of these people live in poor countries, kept poor by the effects of worm-related malnourishment. What may surprise many is that worms also cause the majority of cases of some cancers in these countries.

Read More

Phytochemicals: beyond vitamins

Phytochemicals are non-nutritive chemicals in plant foods that protect plants from microbial invasions and infections.

Read More

Sharp increase in falls in women during midlife

Falls are not just a problem of advanced age, according to researchers, who have identified a sharp increase in falls after the age of 40, particularly in women.

Read More

Latest News

Friends and enemies ‘make sense’ for long-lived animals

It makes evolutionary sense for long-lived animals to have complex social relationships – such as friends and enemies – researchers say.

Read

Exercise boosts blood flow to the brain, study finds

It’s not just your legs and heart that get a workout when you walk briskly; exercise affects your brain as well. A new study shows that when older adults with mild memory loss followed an exercise program for a year, the blood flow to their brains increased.

Read

Thirteen things primary care clinics can check to help preserve brain health

It’s important to take steps to prevent cognitive decline before changes to the aging brain take hold. Primary care is an ideal setting to address specific risk factors early and throughout life that can prevent cognitive decline.

Read

“Our bodies are our gardens - our wills are our gardeners.”

William Shakespeare